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Nonequilibrium critical behavior from the master equation
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Kinetic models for nonequilibrium phase transitions have been extensively studied via mean-
field theory, series expansions, and Monte Carlo simulation. In this paper we present a different
approach based on studying the normal-mode solutions of the master equation for the system to
extract information on the static and dynamic behavior of the system in the vicinity of the phase
transition. This method provides insight into the physics of the transition and offers an alternative
technique for analyzing kinetic phase transitions. We demonstrate the method by extracting the
critical behavior of a simple model from finite-size scaling.
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I. INTRODUCTION

An intriguing feature of a continuous thermodynamic
phase transition is the existence of universal behavior [1]
near the transition characterized by a set of critical ex-
ponents. These exponents are universal in the sense that
they are essentially independent of all microscopic details
except for the symmetry properties of the Hamiltonian,
the range of the interaction, and the spatial dimension-
ality of the system. The ideas of scale invariance and
coupling of fluctuations on all length scales [1] provide an
elegant picture of the long-wavelength and low-frequency
behavior of a system in thermal equilibrium near a phase
transition.

In recent years there has been much work devoted to
understanding the behavior of a system with many de-
grees of freedom whose steady state is not a state of ther-
mal equilibrium. These are typically open systems [2]
driven by an external force. Examples include lasing [2],
fluid turbulence [2], chemical reactions [3], epidemic mod-
els [4], and exciton dynamics [5]. These systems can ex-
hibit phase transitions where the gross macroscopic fea-
tures of the steady state change in a singular manner as
the external control parameters are smoothly varied. The
behavior of such a nonequilibrium system near a phase
transition exhibits many characteristics similar to those
seen in thermodynamic phase transitions. Thus it is nat-
ural to ask to what extent one can adapt the language
and techniques developed in treating equilibrium phase
transitions to the nonequilibrium case.

There have been several methods used in the past to
study models of nonequilibrium phase transitions. The
mean-field approach [6] replaces the complicated many-
particle dynamics with a set of evolution equations for
smoothed average quantities. The instabilities of the
steady-state solutions, or bifurcations, have been exten-
sively investigated [2,6]. As in the equilibrium case, we
expect the mean-field approximation to fail in the vicinity
of the transition if large-scale fluctuations are present. In
order to go beyond the mean-field approximation, recent
studies have employed series expansions [7] or numerical
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simulations [8-10] to extract the critical behavior.

In this paper we will investigate the static and dynamic
behavior of a nonequilibrium phase transition from a dif-
ferent perspective, using a kinetic description based on
the master equation for the probability distribution. The
steady-state solutions of the master equation describe
the static behavior of the system, and by decomposing
the master equation into various normal modes we can
study the relaxation to the steady state. We argue below
that the phase transition in a nonequilibrium system is
caused, in the infinite-volume limit, by the appearance of
new effective steady states derived from the slowly relax-
ing modes of the master equation. By studying the slow
modes in a large system we can thus extract informa-
tion about the nature of the static and dynamic behavior
near the phase transition. This method, which bears a
strong resemblance to the transfer-matrix technique used
in equilibrium systems, is an additional approach to find-
ing critical behavior that complements the Monte Carlo
or series-expansion method. While the method of solv-
ing a master equation by a normal-mode decomposition
is well known [11] in the chemical physics literature, the
present work is an attempt to combine it with finite-size
scaling to study the critical behavior of a nonequilibrium
phase transition.

This paper is divided into four sections. In Sec. II we
will discuss the mechanism for a nonequilibrium phase
transition from the point of view of the master equation.
In Sec. III we will present finite-size-scaling studies of the
critical behavior of a model exhibiting a nonequilibrium
phase transition, and in Sec. IV we will briefly summarize
our approach.

II. CRITICAL BEHAVIOR
FROM NORMAL MODES

Assuming that the underlying dynamical evolution is
Markovian, a complete description of the behavior of a
system with many degrees of freedom is given by the
master equation
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where P; is the probability for the system to be in a
particular state ¢ and Wj; is the transition probability
from state 7 to state j. In any particular kinetic model
the transition rates are determined by a set of rate pa-
rameters that play a role similar to that played by the
chemical potential, temperature, and magnetic field in an
equilibrium system. The above equation was first stud-
ied by Glauber [12] for systems in thermal equilibrium,
where the transition rates obey detailed balance condi-
tion W;;/W;; = P;%/P;% with P*d denoting the equilib-
rium distribution. For nonequilibrium systems, detailed
balance does not hold and the static behavior must be
extracted from Eq. (1).

Writing a solution to Eq. (1) of the form P; =
C? exp(—At), we find that the coefficients C} are the
right eigenvectors of the eigenvalue equation

ACH =Y (Wi} - wic)). (2)
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The dynamical evolution of the system can therefore
be viewed as the evolution of various normal modes of
Eq. (2). The long-time and steady-state behavior is en-
tirely controlled by those modes with a very small or
zero relaxation rate. The behavior of the system in the
vicinity of the phase transition is also controlled by these
same modes. The phase transition must arise from large
changes in the character of the steady-state solutions to
Eq. (2). Level crossing, which in quantum mechanics
leads to large changes in the character of the eigenvec-
tors, cannot occur for the steady-state solutions because
the eigenvalues must remain non-negative. Thus the form
of the eigenvectors generally varies smoothly at the tran-
sition, and so the transition must be accompanied by the
appearance of additional steady-state solutions for some
range of values of the rate parameters. Since most ki-
netic models have a unique steady state in a finite-size
system, these extra steady-state solutions will arise only
in the infinite-volume limit where their relaxation rates
will vanish. For a system of finite size, we thus expect to
see a change in the size dependence of the relaxation rate
of these slowly decaying modes at the transition. As in
an equilibrium transition, we expect that the number of
independent modes that become degenerate in the infi-
nite volume limit is determined by the symmetries of the
kinetic rules and the spatial dimensionality.

As an example we consider the class of nonequilibrium
models with a single absorbing state, that is, a configu-
ration that cannot be left once it is entered. This class
includes the contact process [13], epidemic models [4],
and models for catalytic reactions on surfaces [14,15].
The generic behavior of the phase transition in this class
of models was elucidated first by Grassberger [16] and
Janssen [17], who argued that the critical behavior should
be the same as directed percolation (DP) [18,19] and
Reggeon field theory (RFT) [20]. This behavior has been
seen in a variety of models [7-10,21,22].

For system of finite size, the only steady state of this
class of models is the adsorbing state. Since the mode
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corresponding to the steady state has unit probability of
one configuration only, there is no statistical noise in this
steady state. All other modes of the master equation
have nonzero amplitudes for many different configura-
tions, and thus statistical noise. As a function of some
control parameter p, there may be a critical value p = p.
where for p < p. the relaxation rate v of one excited
mode into the absorbing state remains nonzero for large
systems and for p > p. the relaxation rate of this mode
vanishes in the limit of infinite system size. This mode
then becomes the effective steady state for the system
and the system changes from a noiseless absorbing steady
state to a noisy state. Because these systems have no
symmetry other than translational invariance, we expect
only one mode becomes critical at p.. This is the sce-
nario that occurs for models that show critical behavior
characteristic of directed percolation [16,21].

Our approach bears a strong resemblance to the
transfer-matrix technique used for equilibrium systems
[23], where the partition function is found from the
largest eigenvalue of the transfer matrix and the spa-
tial correlation length is found from the ratio of the two
largest eigenvalues [23]. This technique, which is exten-
sively used for one-dimensional systems with short-range
forces, forms the basis of Onsager’s solution to the two-
dimensional (2D) Ising model [24], which identifies the
critical temperature with the point where the two largest
eigenvalues of the transfer matrix become degenerate.
Kac [25] has argued that the degeneracy of eigenvalues
of the transfer matrix is the generic mathematical mech-
anism underlying second order phase transitions with di-
vergent spatial correlations.

The transition probability matrix in Eq. (2) acts as
the nonequilibrium analog of the transfer matrix, with
the time direction in the nonequilibrium problem replac-
ing the spatial direction chosen in the transfer matrix.
This means that the static correlations in the nonequi-
librium case are contained not in the eigenvalues but in
the eigenvectors of the slow modes, like the transverse
correlations in the transfer-matrix approach. The mech-
anism we present here can be viewed as the extension of
Kac’s idea [25] to the nonequilibrium case. For example,
Henkel and Privman [26] have argued that asymptotic
degeneracy of the two lowest eigenvalues of the master
equation is a generic feature of the directed percolation
transition.

III. FINITE-SIZE SCALING STUDY

In order to demonstrate the utility of this method, we
have studied a kinetic model [27] that simulates a sur-
face catalytic reaction A + A — A, on a chain of sites,
each site of which can be either empty or occupied by
one atom. Atoms may adsorb on vacant sites if both
neighboring sites are also empty. If one or both of the
adjacent sites are already occupied, the atom will absorb
with probability p. Otherwise, with probability (1 — p),
it will immediately react with a neighboring atom and
both atoms will instantaneously desorb to leave two va-
cant sites. Atoms only react immediately after being ad-
sorbed. As a function of the single rate parameter p, the
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number of vacancies in the chain shows a second order
transition at a critical value p. = 0.28. For p < p, the va-
cancy fraction is nonzero and a reactive steady state ap-
pears with a constant production rate of A;. For p > p.
the steady state is an absorbing state where every site
is occupied. Both the static [8,27] and dynamic [8] criti-
cal behavior of this model have been extensively studied
via Monte Carlo simulation and the critical exponents
appear to be in the DP/RFT universality class, in agree-
ment with the discussion [16,17,21] above on transitions
to an absorbing state.

We calculated the transition rates W;; in Eq. (2) for
system sizes from L = 3 to 19 with various values of p
and then diagonalized the resulting nonsymmetric rate
matrix numerically. We used the translational invari-
ance of the model to reduce the large size of the matrix
(2L) by a factor of L by studying modes with a definite
wave vector k, since modes with different values of k are
uncoupled.

We argued above that for models of the present kind,
the slowest mode determines the critical behavior of the
system. In Fig. 1 we show the relaxation rates of the two
slowest k = 0 modes, and it is obvious from this figure
that only one mode controls the long-time behavior of
the system. We have also examined the k # 0 modes,
and while for large systems some of them lie below the
upper mode shown in Fig. 1, they all relax more slowly
than the lowest £ = 0 mode. This behavior supports our
contention that, in addition to the absorbing state, only
one (k = 0) mode controls the critical behavior of the
system while the rest of the modes act as spectators.

As an additional check, we computed directly a quan-
tity studied in Monte Carlo simulations on this model [8],
the mean lifetime for a vacancy
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FIG. 1. Therelaxation rates of the two slowest £ = 0 modes
in the vicinity of the critical point as a function of system size.

where N (t) is the number of vacant sites at time ¢. From
Eq. (1) the vacancy fraction N(t) behaves as

N(t) = Za,’ e Mt (4)

where the coefficients a; are determined by the initial
conditions and ); is the decay rate of the i¢th normal
mode. Then from Eq. (3) we find

2
s o (3)
1

T™C — i>1 . (5)
My (3)
i>1

Contributions to Tyvc from modes other than the slowest
mode are evidently included in the summation, but if we
use an initially blank lattice as used in the simulations
[8], a direct calculation shows the corrections a; /ay are
typically of the order of a few percent for variety of lattice
sizes. Thus Tvc should and indeed does show the same
critical behavior as 7 = 1/A;. This is further evidence
that the critical behavior of the system is solely controlled
by the lowest normal mode.

We calculated the relaxation time 7 = 1/A; of the
slowest mode for systems of size 3 to 19 for various values
of p. The critical exponents z and v can be found by
assuming that 7 obeys a finite-size scaling relation

r=L*f (e - P L] | (6)

where f1(z) o« z* for z — oo.

We determined the critical point p. and exponent z
from plots of In(7) vs In(L) plots for various p values,
which are shown in Fig. 2. The value of p that produces
a straight line in the plot indicates the critical point p..
We find p. = 0.28 4 0.02, in agreement with the value of
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FIG. 2. Behavior of In(7) vs In(L) for various p values. The

value of p which produces a straight line yields the critical
point p. = 0.27 = 0.02.
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FIG. 3. A scaling plot of In(rL™*) vs In [(p — pc)L'/*] for
various lattice sizes showing the collapse of the data on a
single universal curve.

0.277 found by Monte Carlo simulation [8]. Furthermore
we find that it is possible to scale all the data for 7 for
various L onto a single universal curve, as Eq. (6) would
predict. In Fig. 3 we show the scaled data for In(7L™%) vs
In [(p — pc) LMY ] for variety of system sizes. The scaling
yields values of z = 1.53 £ 0.12 and v = 1.05 £ 0.05,
which agree well with the 1+1D DP [18] values of 1.58
and 1.10, respectively. These results confirm earlier work
[8] that the phase transition in this model belongs to the
RFT/DP universality class.
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IV. CONCLUSIONS

We have presented here a picture of the behavior of
a nonequilibrium system using the modes of the mas-
ter equation. Our method emphasizes the behavior of
various normal modes as the system undergoes a phase
transition and it gives a complementary way to study
nonequilibrium transitions. The method and the under-
lying mechanism for the transition bear a strong resem-
blance to transfer-matrix techniques for equilibrium sys-
tems. Our approach also directly implements the role
of symmetry in determining the critical behavior, so it
should prove useful in looking for models which exhibit
critical behavior different from directed percolation.

For the model studied here we have been able to isolate
the relevant critical mode from the irrelevant modes and
have used a finite-size-scaling approach to find the critical
exponents. We have also found evidence of asymptotic
degeneracy in the two largest eigenvalues, as expected for
a directed percolation transition [25]. While the results
we have obtained so far are not as accurate as those found
by series expansion [7] and Monte Carlo [8,9,22] simula-
tions, the results can be obtained with far less computa-
tional effort for a similar accuracy. Because we wanted to
analyze the master equation exactly, the present results
were limited by the size of the largest rate matrix we can
diagonalize. It is possible to study larger systems by us-
ing variational techniques or by truncating the basis of
states.
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